ON THE RADIUS OF THE SMALLEST BALL CONTAINING A COMPACT MANIFOLD OF POSITIVE CURVATURE

JOEL SPRUCK

Theorem. Let $M \subset E^n$ be a compact Riemannian manifold of dimension $n-1 \geq 2$ with sectional curvatures $K(\pi) \geq 1/c^2$ for all tangent plane sections π . Then M is contained in a ball of radius $R < \frac{1}{2}\pi c$ and this bound is best possible.

According to a well-known result of Bonnet, any two points on M can be joined by a minimizing geodesic of length less than or equal to πc . Hence the crude bound $R < \pi c$ follows. The proof we give of the theorem was inspired by the interesting note of Nitsche [1].

Proof. Let B be the closed ball of smallest radius containing M. We choose coordinates so that $B = \{x = (x_1, \dots, x_n) : |x| \le R\}$. The set of points of $M \cap \partial B$ must "support" B, that is, each closed half space $x \cdot v \ge 0$ (v a constant vector) must contain at least one such point. Let $C = M \cap \partial B$.

If two points of C are antipodal on ∂B , their distance apart, 2R, must be less than the length of a minimizing geodesic joining these points. Hence by the theorem of Bonnet mentioned above $R < \frac{1}{2}\pi c$.

Now suppose C contains no pair of antipodal points of ∂B . Then C contains at least three points. If P_1 is one such point, a second point P_2 must lie in the half-space $x \cdot P_1 \leq 0$. We choose a coordinate system in which these points are

$$P_1 = (0, \dots, 0, (R^2 - \alpha^2)^{1/2}, \alpha), \qquad P_2 = (0, \dots, 0, -(R^2 - \alpha^2)^{1/2}, \alpha)$$

where $0 \le \alpha < R/\sqrt{2}$. Still another point $P_3 = (x_1, \dots, x_n)$ must lie in the half-space $x_n \le 0$. Let L be the perimeter of the triangle determined by P_1, P_2, P_3 . Then

$$L = 2(R^{2} - \alpha^{2})^{1/2} + [2R^{2} - 2(R^{2} - \alpha^{2})^{1/2}x_{n-1} - 2\alpha x_{n}]^{1/2} + [2R^{2} + 2(R^{2} - \alpha^{2})^{1/2}x_{n-1} - 2\alpha x_{n}]^{1/2}.$$

For fixed α and $x_n \le 0$, the right hand side is minimized for $x_{n-1} = \pm (R^2 - x_n^2)^{1/2}$. Hence

$$L \ge 2(R^2 - \alpha^2)^{1/2} + \left[2R^2 - 2(R^2 - \alpha^2)^{1/2}(R^2 - x_n^2)^{1/2} - 2\alpha x_n\right]^{1/2} + \left[2R^2 + 2(R^2 - \alpha^2)^{1/2}(R^2 - x_n^2)^{1/2} - 2\alpha x_n\right]^{1/2}.$$

Communicated by L. Nirenberg, December 17, 1971. Research supported in part by N.S.F. Grant GU-2582.

Keeping α fixed the right hand side is minimized when $x_n = 0$. Hence

$$L \geq 2(R^2 - \alpha^2)^{1/2} + [2R^2 - 2R(R^2 - \alpha^2)^{1/2}]^{1/2} + [2R^2 + 2R(R^2 - \alpha^2)^{1/2}]^{1/2}.$$

Finally, the right hand side is minimized when $\alpha=0$. This gives $L\geq 4R$. Now consider a (minimizing) geodesic triangle on M determined by the points P_1,P_2,P_3 . According to a theorem of Toponogov [2], the perimeter P of any such triangle satisfies $P\leq 2\pi c$. Since P>L, we have $R<\frac{1}{2}\pi c$. This is the required estimate. The following example shows that this estimate is best possible.

Example. Suppose first n=3. Consider the surfaces of revolution of constant Gauss curvature $1/c^2$. The generating curves of these surfaces form a one paramete family of curves starting from a semi-circle of diameter 2c and eventually stretching out to a "needle" of diameter $2\pi c$. If we "round off the corners" and revolve the modified generating curve, we obtain a sequence of compact surfaces satisfying $K \ge 1/c^2$ with Euclidean diameter tending to $2\pi c$.

To obtain an example for n > 3, let $x_2 = f(x_1)$ describe the modified generating curve described above. Then the hypersurface determined by the relation $x_n^2 + \cdots + x_n^2 = f(x_1)^2$ gives the repuired example.

Remark. If n=2 and M is a *simple* plane curve with curvature $\geq 1/c > 0$, then it is easy to show that M is contained in a circle of radius c. If n=3 and M is an ellipsoid satisfying $K \geq 1/c^2$, then it is easy to check that M is contained in a ball of radius c.

Acknowledgement. The author would like to thank E. Calabi for correcting his erroneous idea of what the correct bound should be. The example above (n = 3) is due to him.

References

- J. C. C. Nitsche, The smallest sphere containing a rectifiable curve, Amer. Math. Monthly 27 (1971) 881-882.
- [2] V. A. Toponogov, Riemannian spaces having their curvature bounded below by a positive number, Amer. Math. Soc. Transl. 37 (1964) 291-336.

University of New Mexico